Time left:

[All Quizzes] → [Introduction to Algorithms] → [Sorting and Searching]


1. ► Binary search on AVL trees can be done at most in O(lgn) steps

A.
B.

2. ► Topological sort requires O(V) space

A.
B.

3. ► Merge sort works on the principle of divide-and-conquer

A.
B.

4. ► Heap sort cannot be done in-place

A.
B.

5. ► Quick sort guarantees O(nlgn) performance in all the cases

A.
B.

6. ► Binary search only operates on sorted sequence

A.
B.

7. ► Heap sort guarantees O(nlgn) performance

A.
B.

8. ► A simple depth-first walk is enough to give topological ordering

A.
B.

9. ► Merge sort can be parallelized

A.
B.

10. ► Merge sort is not a stable sort

A.
B.

11. ► Merge sort’s O(nlgn) performance is not guaranteed

A.
B.

12. ► In unsorted sequence, key and data cannot stay together

A.
B.

13. ► Heap sort doesn’t have an implementation in STL

A.
B.

14. ► Quick sort can be done in-place

A.
B.

15. ► Hidden constants are higher in merge sort

A.
B.

16. ► Heap sort makes use of heap data structure

A.
B.

17. ► Searching is more expensive in sorted sequence

A.
B.

18. ► A ready list can be obtained through topological sort prior to scheduling

A.
B.

19. ► STL doesn’t have an implementation of quick sort

A.
B.

20. ► Merge sort has linear space requirement

A.
B.


© 2016 VirtuQ™ Education All right reserved. | Terms of Use | Privacy Policy